Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species.

نویسندگان

  • Aimee Landar
  • Jaroslaw W Zmijewski
  • Dale A Dickinson
  • Claire Le Goffe
  • Michelle S Johnson
  • Ginger L Milne
  • Giuseppe Zanoni
  • Giovanni Vidari
  • Jason D Morrow
  • Victor M Darley-Usmar
چکیده

Electrophilic lipids, such as 4-hydroxynonenal (HNE), and the cyclopentenones 15-deoxy-Delta12,14 -prostaglandin J2 (15d-PGJ2) and 15-J2-isoprostane induce both reactive oxygen species (ROS) formation and cellular antioxidant defenses, such as heme oxygenase-1 (HO-1) and glutathione (GSH). When we compared the ability of these distinct electrophiles to stimulate GSH and HO-1 production, the cyclopentenone electrophiles were somewhat more potent than HNE. Over the concentration range required to observe equivalent induction of GSH, dichlorofluorescein fluorescence was used to determine both the location and amounts of electrophilic lipid-dependent ROS formation in endothelial cells. The origin of the ROS on exposure to these compounds was largely mitochondrial. To investigate the possibility that the increased ROS formation was due to mitochondrial localization of the lipids, we prepared a novel fluorescently labeled form of the electrophilic lipid 15d-PGJ2. The lipid demonstrated strong colocalization with the mitochondria, an effect which was not observed by using a fluorescently labeled nonelectrophilic lipid. The role of mitochondria was confirmed by using cells deficient in functional mitochondria. On the basis of these data, we propose that ROS formation in endothelial cells is due to the direct interaction of these lipids with the organelle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of the permeability transition and cytochrome c release by 15-deoxy-Delta12,14-prostaglandin J2 in mitochondria.

The electrophilic lipid 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is known to allow adaptation to oxidative stress in cells at low concentrations and apoptosis at high levels. The mechanisms leading to adaptation involve the covalent modification of regulatory proteins, such as Keap1, and augmentation of antioxidant defences in the cell. The targets leading to apoptosis are less well defi...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium.

The controlled formation of ROS (reactive oxygen species) and RNS (reactive nitrogen species) is now known to be critical in cellular redox signalling. As with the more familiar phosphorylation-dependent signal transduction pathways, control of protein function is mediated by the post-translational modification at specific amino acid residues, notably thiols. Two important classes of oxidant-de...

متن کامل

I-3: Reactive Oxygen Species: A Dilemma for

Spermatozoa are very special cells and constantly exposed to the interphase between oxidative stress through high amounts of reactive oxygen species (ROS) and leukocytes, and reduction by means of scavengers and antioxidants. Considering the very special functions of spermatozoa as being the only cells with such high polarization and exerting their functions outside the body, even in a differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 290 5  شماره 

صفحات  -

تاریخ انتشار 2006